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ABSTRACT: In this paper, we show a gathering 

of flexible interconnection organize topologies, 

named Recursive Cube of Rings (RCR), which are 

recursively created by adding ring edges to a strong 

shape. RCRs have various charming topological 

properties in building adaptable parallel machines, 

for instance, settled degree, little estimation, wide 

division width, symmetry, fault tolerance, et cetera. 

We at first break down the topological properties of 

RCRs. We by then show and separate a general 

stop free directing calculation for RCRs. Using a 

whole combined tree embedded into a RCR with 

advancement cost approximating to one, a capable 

communicate directing calculation on RCRs is 

proposed. The upper bound of the amount of 

message passing steps in a solitary communicate 

operation on a general RCR is furthermore 

induced.  
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I. INTRODUCTION 
A Computer framework is adaptable if it 

can scale up its assets to oblige reliably extending 

execution and value ask. In a parallel PC 

framework with coursed memory designing, the 

arrangement of the interconnection organize 

topology is fundamental to the execution and 

adaptability of the framework. A general flexible 

system topology should organize as about as 

possible to the general correspondence cases of 

various valuable parallel applications to achieve 

low system inaction and high throughput.   

To satisfy the adaptability need for 

interconnection systems, it is charming that an 

interconnection arrange has a settled degree, little 

measurement, wide cut width, symmetric hubs, and 

fault tolerance. In most existing interconnection 

organizes, these necessities are routinely in battle 

with each other. For example, in spite of the way 

that a N work and torus have settled degree, their 

breadths are 2N and N, independently (therefore, 

respectably far reaching). The center point level of 

a n-3D shape (hypercube) augments 

logarithmically with the traverse of the system 

however the distance across of hypercube is close 

to nothing.   

 

Starting late, various new topologies have 

been proposed. Taking the aftereffect of two set up 

topologies is an up and coming system for growing 

new interconnection systems. Advancement of 

such a thing system requires first picking a base 

reference, for instance, de Bruijn systems , modify 

exchange systems , and complete double trees . The 

base parts may be unmistakable , . The cross 

consequence of interconnection systems beats 

standard topologies, for instance, work and 

hypercube in distance across, degree, and 

organizing size. Straight recursive systems will be 

systems that are conveyed by a direct rehash of the 

edge:  

 
 

Where ai1≤I ≤k, are nonnegative whole 

numbers and ak ≠ 0In every repeat, the subscript n 

compares to the measurement of the network Xn, 

while the parameter ai shows the quantity of events 

of a lower dimensional network Xni inside the n-

dimensional network. The level of direct recursive 

systems augments logarithmically with the system 

scale. Considering the extending inconvenience in 

format and packaging, if the level of a system 

develops with the processor gauge , the benefit of 

adaptability from taking the consequence of 

interconnection systems may be uncommonly 

diminished in sensible applications. A system with 

settled hub degree is in this way hugely charming. 

A cube of rings (COR) organize is another 

proposed arrange that offers an amicability among 

flexibility and gear overhead. A cube of ring 

system is produced to supplant each hub of a 

hypercube with a ring of a comparable size. It 

contrasts from cube-associated cycle in the strategy 

for choosing the cube neighbors of each hub. The 

cube of rings has a settled hub degree and little 
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distance across in the meantime, as will be shown 

later; the system measure that may be picked is 

incredibly limited.   

In this paper, we propose another 

gathering of interconnection systems, named 

recursive cube of rings (RCR) arrange. A RCR is 

worked by recursive improvement on a given age 

seed (GS). A GS for a RCR includes different rings 

interconnected in a cube-like outline. It can be 

made by particular criteria, for instance, the 

alluring size of the system. RCRs have various 

appealing topological properties in building 

flexible parallel machines, for instance, settled 

degree, little distance across, high partition width, 

and symmetry. Ring, hypercube, and cube-

associated cycles are outstanding kinds of the 

RCRs. Likewise, we show that RCR have plane 

property, in which each hub of a RCR organize is 

arranged on no short of what one cube plane. All 

cube planes are associated by ring planes. This 

property may tremendously adjust the steering 

calculation framework and upgrade the implanting 

limit. For example, we may use the symmetry and 

plane property of RCR to successfully realize a 

communicate calculation. Using an aggregate 

double tree introduced in a RCR with augmentation 

cost approximating one, we develop a beneficial 

communicate steering calculation with low upper 

bound of the amount of message passing. A general 

stop free steering calculation for the RCR is 

furthermore displayed and inspected.   

 
Fig 1.Generation seed GS(2, 2) for RCR. 

 
Fig .2 RCR (2,2,1) after one expansion from GS 

(2,2) 

 

The paper is dealt with as tails: We at first 

depict the proposed RCR topology and its recursive 

age system in Section 2. In Sections 3, we take a 

gander at the topological properties of RCR. The 

utilization of communicate operations in light of an 

aggregate parallel tree, and moreover a general 

message steering calculation, are shown and 

inspected in Section 4, trailed by a conclusion in 

Section 5. 

   

II. RECURSIVE CUBE OF RINGS (RCR) 
A general RCR involves different rings 

interconnected by a couple of connections, called 

cube joins. The hubs inside a ring are associated by 

joins called ring joins. A RCR is demonstrated by 

RCR(k; r; j), where k is the estimation of the cube, 

r is the amount of hubs on a ring, and j is the 

amount of the improvements from the age seed.   

A limit f like modulo is described for the 

depiction of hub locations and examination of 

RCRs properties. The importance of f isn't the same 

as the modulo because of 0 a b, which is described 

as takes after:  
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Fig. 2: RCR(2; 2; 1) after one expansion from 

GS 

 

Give N0 a chance to be the attractive 

number of hubs in the system, and N the quantity 

of hubs in the created RCR organize. We may 

choose a coveted estimation of r, which thus 

decides the estimation of j, with the end goal that N 

is nearest to N0 as per the accompanying equation:  

 
Fig. 1 delineates an age seed GS(2; 2). 

Fig. 2 demonstrates a RCR(2; 2; 1) got by one 

development from age seed GS(2; 2), and Fig. 3 

demonstrates a RCR(2; 2; 2) got from one more 

extension from RCR(2; 2; 1). At every extension, 

the quantity of hubs is multiplied and some new 

cube joins must be included. In the meantime, with 

a specific end goal to keep the steady hub degree, 

some cube joins must be evacuated. For instance, 

the hub [000; 0] and hub [010; 0] in RCR(2; 2; 1) 

are mapped, separately, to hub [0000; 0] and hub 

[0010; 0] in RCR(2; 2; 2). The cube connect ([000; 

0], [010; 0]) in the RCR(2; 2; 1) is expelled.  

 
Fig. 3. The topology of RCR(2; 2; 2). 

 

RCR(2; 2; 2), with the goal that hub 

[0000; 0] and hub [0010; 0] in the RCR(2; 2; 2) 

stay steady degree three when two new cube joins 

are added to these two hubs amid the extension, as 

appeared in Fig. 3. The calculation for developing a 

RCR is portrayed in Fig. 4. It is vital to take note of 

that, for the general cases, the real number of hubs 

N in a RCR system might be not the same as the 

coveted system measure N0 . For instance, to 

manufacture a system with 20,000 hubs (N0: 20; 

000), the span of the nearest RCR organize is 

20,480, as will be clarified in Section 3.  

 

TOPOLOGICAL PROPERTIES OF RCRS   

In this segment, we analyze the major topological 

properties of the proposed RCR systems, for 

example, a RCR measure, degree, cut width, 

distance across, estimate coordinating property, 

plane property, symmetry, et cetera.  

General Topological Properties   

An RCR(k; r; j) arrange is demonstrated as a chart 

G GV;E, where a vertex in V, G relates to a hub in 

the RCR organize, and an edge in E,G compares to 

a connection in the RCR arrange.  

Plane Property   

RCRs also possess a special plane property such 

that an RCR(k; r; j) can be taken as the 

combination of two different types of planes, cube-

plane and ring-plane, to be defined below.  
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This property can be used to develop efficient 

routing algorithms.  

 
 

RCR as a Cayley Graph   

A system is symmetric if the system 

topology is a similar looking from any hub in the 

system. A symmetric interconnection system may 

rearrange the plan of the switches and interfaces, 

and along these lines decrease the cost of the 

systems. Cayley diagrams have been turned out to 

be symmetric charts. We demonstrate that RCRs 

are Cayley diagrams, and in this way they are 

symmetric. The accompanying definitions are 

straightforwardly from.  

Finally, we can construct the RCR (k; r; j) 

in the group G based on H and the associative 

operator. For any node [A; b] of the RCR (k; r; j) 

and each element from H, we derive one edge to 

each neighbor of [A; b] in the RCR (k; r; j) as 

follows:  

 
Therefore, RCR (k; r; j) is a Cayley graph. Then, 

according to, we conclude that the RCR (k; r; j) is 

symmetric.  

MESSAGE ROUTING IN RCR   

Productive steering calculations are basic 

for any interconnection systems. In this area, we 

introduce productive unicast and communicate 

message directing calculations for RCR systems. 

We will accept that wormhole exchanging method 

is received in the RCR systems. Virtual channels 

will be acquainted with evade the halt.   

 

Unicast Communication   

The fundamental thought of the directing 

calculation is like the notable e-cube steering 

calculation for paired cubes. It is demonstrated that 

every hub of a RCR (k; r; j) is on sure CPs. On 

account of k 2, every hub is found just on a solitary 

CP. In one CP, the addresses [A; b]s of hubs 

demonstrate a standard difference in bit examples 

with the end goal that a similar k bit positions in 

An of every hub contrast and alternate bits continue 

as before. A fitting neighboring cube plane can be 

picked in the path like the e-cube directing. The 

leave hub of such a picked CP is the hub nearest to 

the goal. We call such a directing calculation in 

Fig. 6 a bounce plane steering calculation. The 

bounce plane steering calculation can simply locate 

a most brief way from any source hub to any goal 

hub in RCRs.   

To keep the events of halt, two virtual 

channels are set up on a physical connection. A hub 

[A; b] is appointed a whole number A r b. The hubs 

in the system would then be able to be requested 

with the relegated numbers as the keys. One of the 

two virtual channels, meant by vc1, is utilized 

when a message navigates a connection in rising 

request starting with one hub then onto the next. 

The other virtual channel meant by vc2 is utilized 

when the message crosses a connection in slipping 

request, paying little respect to cube connections or 

ring joins. Let (a; c) or (Aa; ba; Ac; bc) mean a 

connection. For a cube interface, Aa varies from Ac 

in one piece while ba, bc. For a ring join, ba ÿ bc j 

1 while Aa, Ac. It can be demonstrated that the 

message steering calculation appeared in Fig. 6 is 

sans halt.   

 

III. CONCLUSION 
We have proposed a class of new 

topologies for an interconnection organize, named 

recursive cube of rings, which are recursively built 

by adding ring edges to a cube. We have 

demonstrated that RCRs have numerous alluring 

topological properties in building versatile parallel 

machines, for example, settled degree, little 

distance across, plane property, wide separation 

width, and symmetry. We have additionally 

displayed and examined a general halt free steering 
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calculation for RCRs, and built up a proficient 

communicate directing calculation utilizing a total 

paired tree inserted into a RCR with development 

cost approximating to one. As for incremental 

versatility, the proposed RCR systems may not 

achieve the level of adaptability of the 

incrementally adaptable fragmented star diagrams 

proposed in, in which the hole between back to 

back sizes can be completely erased. Be that as it 

may, contrasting with the other existing topologies, 

for example, n-star chart and hypercube, the RCR 

organizes clearly have better incremental versatility 

as appeared in Section 3. Our future work is to 

build up another topology in light of the RCR 

systems that can accomplish the level of the 

incremental adaptability of the fragmented diagram 

while saving it to be Cayley charts.  
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